2,359 research outputs found

    Joint Resource Partitioning and Offloading in Heterogeneous Cellular Networks

    Full text link
    In heterogeneous cellular networks (HCNs), it is desirable to offload mobile users to small cells, which are typically significantly less congested than the macrocells. To achieve sufficient load balancing, the offloaded users often have much lower SINR than they would on the macrocell. This SINR degradation can be partially alleviated through interference avoidance, for example time or frequency resource partitioning, whereby the macrocell turns off in some fraction of such resources. Naturally, the optimal offloading strategy is tightly coupled with resource partitioning; the optimal amount of which in turn depends on how many users have been offloaded. In this paper, we propose a general and tractable framework for modeling and analyzing joint resource partitioning and offloading in a two-tier cellular network. With it, we are able to derive the downlink rate distribution over the entire network, and an optimal strategy for joint resource partitioning and offloading. We show that load balancing, by itself, is insufficient, and resource partitioning is required in conjunction with offloading to improve the rate of cell edge users in co-channel heterogeneous networks

    Sensitive White Space Detection with Spectral Covariance Sensing

    Full text link
    This paper proposes a novel, highly effective spectrum sensing algorithm for cognitive radio and whitespace applications. The proposed spectral covariance sensing (SCS) algorithm exploits the different statistical correlations of the received signal and noise in the frequency domain. Test statistics are computed from the covariance matrix of a partial spectrogram and compared with a decision threshold to determine whether a primary signal or arbitrary type is present or not. This detector is analyzed theoretically and verified through realistic open-source simulations using actual digital television signals captured in the US. Compared to the state of the art in the literature, SCS improves sensitivity by 3 dB for the same dwell time, which is a very significant improvement for this application. Further, it is shown that SCS is highly robust to noise uncertainty, whereas many other spectrum sensors are not

    A Stochastic-Geometry Approach to Coverage in Cellular Networks with Multi-Cell Cooperation

    Full text link
    Multi-cell cooperation is a promising approach for mitigating inter-cell interference in dense cellular networks. Quantifying the performance of multi-cell cooperation is challenging as it integrates physical-layer techniques and network topologies. For tractability, existing work typically relies on the over-simplified Wyner-type models. In this paper, we propose a new stochastic-geometry model for a cellular network with multi-cell cooperation, which accounts for practical factors including the irregular locations of base stations (BSs) and the resultant path-losses. In particular, the proposed network-topology model has three key features: i) the cells are modeled using a Poisson random tessellation generated by Poisson distributed BSs, ii) multi-antenna BSs are clustered using a hexagonal lattice and BSs in the same cluster mitigate mutual interference by spatial interference avoidance, iii) BSs near cluster edges access a different sub-channel from that by other BSs, shielding cluster-edge mobiles from strong interference. Using this model and assuming sparse scattering, we analyze the shapes of the outage probabilities of mobiles served by cluster-interior BSs as the average number KK of BSs per cluster increases. The outage probability of a mobile near a cluster center is shown to be proportional to e−c(2−ν)2Ke^{-c(2-\sqrt{\nu})^2K} where ν\nu is the fraction of BSs lying in the interior of clusters and cc is a constant. Moreover, the outage probability of a typical mobile is proved to scale proportionally with e−c′(1−ν)2Ke^{-c' (1-\sqrt{\nu})^2K} where c′c' is a constant.Comment: 5 page

    Downlink SDMA with Limited Feedback in Interference-Limited Wireless Networks

    Full text link
    The tremendous capacity gains promised by space division multiple access (SDMA) depend critically on the accuracy of the transmit channel state information. In the broadcast channel, even without any network interference, it is known that such gains collapse due to interstream interference if the feedback is delayed or low rate. In this paper, we investigate SDMA in the presence of interference from many other simultaneously active transmitters distributed randomly over the network. In particular we consider zero-forcing beamforming in a decentralized (ad hoc) network where each receiver provides feedback to its respective transmitter. We derive closed-form expressions for the outage probability, network throughput, transmission capacity, and average achievable rate and go on to quantify the degradation in network performance due to residual self-interference as a function of key system parameters. One particular finding is that as in the classical broadcast channel, the per-user feedback rate must increase linearly with the number of transmit antennas and SINR (in dB) for the full multiplexing gains to be preserved with limited feedback. We derive the throughput-maximizing number of streams, establishing that single-stream transmission is optimal in most practically relevant settings. In short, SDMA does not appear to be a prudent design choice for interference-limited wireless networks.Comment: Submitted to IEEE Transactions on Wireless Communication
    • …
    corecore